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Abstract 

Using a time of flight technique, the maximal values of kinetic energy as a function of 
primary mass of fragments from low energy fission of 234U and 236U were measured by 
Signarbieux et al. From calculations of scission configurations, it is concluded that, for those 
two fissioning systems, the maximal value of total kinetic energy corresponding to 
fragmentations (42Mo62, 50Sn80) and (42Mo64, 50Sn80) respectively, are equal to the available 
energies, and their scission configurations are composed by a spherical heavy fragment and a 
prolate light fragment, both in their ground state.  

PACS: 21.10.Gv; 25.85.Ec; 24.10.Lx 
Keywords: Low energy fission; 234U; 236U; fragment kinetic energy; cold fission 

Resumen 

Usando una técnica de tiempo de vuelo, Signarbieux et al. midieron el valor máximo de la 
energía  cinética total en función de la masa primaria de los fragmentos de la fisión de baja 
energía de 234U y  236U. De los cálculos de las configuraciones de escisión, puede concluirse 
que, para esos dos sistemas físiles, el valor máximo de la energía cinética corresponde a las 
fragmentaciones (42Mo62, 50Sn80) y (42Mo64, 50Sn80), respectivamente, son iguales a los valores 
disponibles de energía; y sus configuraciones de escisión están compuestas por un fragmento 
pesado esférico  y un fragmento liviano prolato, ambos en sus estados fundamentales. 

PACS: 21.10.Gv; 25.85.Ec; 24.10.Lx 
Palabras clave: Fisión a baja energía; 234U; 236U; energía  cinética de fragmentos; fisión fría 

1. Introduction

One of the most studied quantities to 
understand the fission process is the fragment 
mass and kinetic energy distribution, which is 
very closely related to the topological features 
in the multi-dimensional potential energy 
surface [1]. Structures on the distribution of 
mass and kinetic energy may be interpreted by 
shell effects on potential energy of the 
fissioning system, determined by the 
Strutinsky prescription and discussed by 
Dickmann [2] and Wilkins [3]. 

In order to investigate the fragments with very 
low excitation energy, using the time of flight 
method, Signarbieux et al. [4] measured the 
fragment mass distribution for high values of 
fragment kinetic energy. Because in that 
kinetic energy region there is no neutron 
emission, the time of flight technique permits 
separate neighboring fragment masses. In this 

work one calculates the deformations of those 
fragments which must correspond to the most 
compact scission configurations, i.e. to the 
highest values of Coulomb interaction energy 
between the two fragments.* 

2. The most compact scission
configurations 

In the process of thermal neutron induced 
fission of 233U, a composed nucleus 234U with 
excitation energy equal to neutron separation 
energy (Bn) is formed first. Then, this nucleus 
splits in two complementary light and heavy 
fragments having LA   and HA as mass 

numbers, and LE  and HE  as kinetic energies, 
respectively. 

The Q-value of this reaction is given by the 
relation: 

* Corresponding author: mmontoya@ipen.gob.pe
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where  AZM ,  is the mass of nucleus with 

Z  and A  as proton number and mass 
number, respectively. 
 
The balance energy at scission configuration 
will be 
 

DXETDECETKEBQ n  0 ;     (2)                                                                                                   

 
where 0TKE   is the pre-scission total kinetic 

energy; CE  is the Coulomb interaction 
energy between fragments; 
 

HL DEDETDE  ,                                  (3)                                                                                                               

 
is the total deformation energy, where LDE  

and HDE  are the light and heavy fragment 
deformation energy, respectively;  and 
 

HL XEXETXE  ,                                   (4)                                                                                                               
 
is the total intrinsic excitation energy, where 

LXE and HXE  are the light and heavy 
fragment intrinsic excitation energy, 
respectively. 

If there is no neutron emission, the light and 
heavy fragments reach the detectors with their 
primary kinetic energies equal to LKE  

and HKE , respectively. The total primary 
fragments kinetic energy will be 
 

TXETDEBQ

CETKEKEKETKE

n

HL


 0           (5)                                                               

The maximal value of total kinetic energy is 
reached when the sum of TDE  and TDX  is 
minimal, i.e. 
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The most compact scission configuration 
occurs when maximal value of coulomb 
energy is equal to the available energy, i.e. 
 

nBQCE max .                                        (7)                           

 
In this case, from Eq. 5 one obtains the 
relations 
 

nBQCETKE  maxmax                         (8)                           

 
and 
 

,0min DE   

0min DX  and  00 TKE .                       (9) 

 
Not always this situation is possible to occur. 
Nevertheless we can assume that for each 
mass fragmentation the maximal value of total 
kinetic energy is obtained for similar 
condition, i.e. 00 TKE , 0TXE  and 

minTDETDE  . 
    
3.  Deformation energy 
 
A fragment total energy (U), composed by 
nucleons, is calculated using the Strutinsky 
method [5]. Strutinsky proposes to define a 
smooth function ( )~U , without fluctuation due 
to shell effects. The shell correction will be 
 

UUU ~                                    
 
As a first approximation, we calculate the 
total energy by a liquid drop model type, 
using the mass formula of Myers and 
Swiatecky [6]. The shell correction ( ZU  and 

NU , corresponding to proton and neutron 

numbers, respectively) is calculated by the 
Strutinsky's method [5], using Nilsson 
Hamiltonian for harmonic axial symmetrical 
well, with spin-orbit and centrifuge 
corrections [7]: 
 

  
Ncorr llslV 22

0 ˆˆˆ  


  (10)                          

 

where l̂ is the orbital angular momentum 
operator, ŝ is the spin operator,   and  are 

the Nilsson's constants. The constant of the 
harmonic oscillator was suggested by Nilsson 
[8]: 
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The pairing correction (δPZ and δPZ,, 
corresponding to proton and neutron numbers, 
respectively) is calculated using the BCS 
method [9]. Then, the relation for the total 
energy of the nucleus ( NZ , ) results: 
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where  ,,~ NZU is the energy of a nucleus

 NZ ,  having deformation  , and

 NZU S ,~ the energy in its spherical shape.

The shape of the nucleus is an ellipsoid. The 
deformation parameter   is defined as: 

0R

R
 , 

where R is the difference between tha major 
and the minor axis and 0R is the average 

nuclear radius. 

As one said, the total fragments kinetic energy 
is close to the available energy for light and 
heavy complementary fragments with masses 
around 104A and 132A , respectively. 
Let us relate this result to the deformation for 
nuclei in this mass neighborhood.  

The energies of nuclei 106-108Mo and 106-108Tc 
as a function of their corresponding 
deformations ( ) are presented on Figs. 1 and 
2, respectively. The assumed Nilsson's 
constants for these nuclei are 

0678.0N , 07.0P ,  

33.0N  and  35.0P . 

As we can see, those nuclei have a prolate 
shape with to 3.0  in their ground state. If 
the fragment deformation changes from 

0  to 3.0  the deformation energy will 
decreases by around 2 MeV, while a change 
from 3.0  to 4.0  increases of 
deformation energy by 4 MeV. This result 
suggests that these nuclei are prolate and soft 

between 0  to 3.0  and became stiff 
for higher prolate deformations. 

The energy as a function of deformation for 
nuclei 130-132Sn are presented on Fig.3. The 
assumed Nilsson's constants for these nuclei 
are: 

0635.0N , 067.0P ,  

43.0N  and  54.0P . 

Figure 1. Deformation energy for nuclei 106-108Mo 
calculated by a drop liquid model with pairing and 
shell correction [6]. See text. 

One can see that 130Sn is softer than 132Sn. For 
a deformation from 0  to 2.0 , the 
nucleus 130Sn spends around 5 MeV while the 
nucleus 132Sn, for the same deformation, 
spends 10 MeV. The neutron number 82N  
and proton numbers around 50Z  
correspond to spherical hard nuclei. 
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Figure 2. Deformation energy for nuclei 106-108Tc 
calculated by a drop liquid model with pairing and 
shell correction [6]. 
 
 The above characteristics of light fragments, 
corresponding to masses from 100A  to 

106A , and their complementary 
fragments, corresponding to mass from 

130A  to 132A , makes possible that 
their maximal values of the total kinetic 
energy of complementary fragments TKE  are 
close to the available energy.  

For the case of 233U(nth, f), the total kinetic 
energy of the couple (42Mo62, 50Sn80) is almost 
equal to the available energy. This result 
means that the corresponding scission 
configuration is composed by fragments in 
their ground state.  On the Fig. 4 we can see 
the several equipotential energy of the 
scission configuration composed by those 
fragments given by the relation: 

 
)()(),( LLHHLH DEDECEV    (13) 

                                                                                                    
where DEH and DEL are the heavy and light 
fragment deformation energy, respectively, 
calculated using the Nilsson model [8] and 
CE  is the Coulomb interaction energy 
between the two fragments separated by 2 fm. 
On this curve one obtains that for 0H  and  

3.0L  the Coulomb energy is equal to the 
available energy to 204 MeV. 

 
Figure 3. Deformation energy for nuclei 130-132Sn 
calculated by a drop liquid model with pairing and 
shell correction [3]. See text. 

The results are similar to complementary 
fragments corresponding to the deformed 
transitional nuclei with LA  between 100 and 

106 ( N  between 60 y 64) and to the spherical 
nuclei with HA  around 132 (Z = 50 and N = 
82). 
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Figure 4. Equipotential curves for scission 
configuration of fragments 42Mo62, 50Sn80 as a 
function of their deformation. L and H are the 
light and heavy fragment deformation with 
Nilsson parameters [7] . 

For the complementary fragments 42Mo62 and 
50Sn80, the maximal value of CE corresponds 
to ground state nuclei or close to that. This 
case is unique. Other configurations will need 
deformation energy, which will be higher for 
the harder nuclei. On the Fig. 3 is presented 
the deformation energy for the spherical 
nuclei 130Se, 131Se and 132Se, respectively. We 
can see that the double magic nucleus 132Se 
need 2 MeV more than 130Se for going from 
the spherical state 0  to the slightly 
deformed 05.0 . The fact that 132Se is no 

so hard as 132Se explain why the highest 
values of Coulomb interaction energy 
correspond to values close to the available 
energy for 233U(nth,f) as well as for 235U(nth,f). 

4. Conclusion

From calculations of scission configurations 
from thermal neutron induced fission of 233U 
and 235U, respectively, one can conclude that 
the highest value of Coulomb interaction 
energy between complementary fragments 
corresponds to fragmentations (42Mo62, 50Sn80)
and (42Mo64, 50Sn80), respectively. For both 
cases the calculated maximal values of 
Coulomb interaction energy values are equal 
to the available energy of the reaction for 
spherical ( 0H ) heavy fragments and 

prolate ( 3.0L ) complementary light 
fragments, which correspond to their ground 
states. Moreover the light fragments are soft 

between 0L  and 3.0 and harder if 
they go to more prolate shapes; while the 
spherical heavy fragment 50Sn80 is no as hard 
as the fragment 50Sn82. The calculated 
maximal value of Coulomb interaction energy 
is equal to the measured maximal value of 
total kinetic energy of fragments. The pre-
scission kinetic energy and intrinsic excitation 
energy of fragments are assumed to be null. 
These results suggest that fission process take 
time to explore all energetically permitted 
scission configurations. 
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