Radiation dose map at the Peruvian Antarctic Station


José Osores, Susana Gonzáles

Instituto Peruano de Energía Nuclear, Av. Canadá 1470, Lima 41, Perú.

Abstract

During January 2015, gamma-absorbed dose rates of natural radionuclides above ground were calculated throughout different areas of the Peruvian Antarctic Station “Machu Picchu”. The median outdoor gamma dose rate in air was determined as 43 5 nGy/h. Using the data obtained in this study the median annual dose was found to be about 376 44 Gy. These dose values are far below the doses reported in Peruvian territory due to the geographical location of the station.

Key words: Antarctic; Natural radioactivity; Dose rates

Mapa de dosis de radiación en la Estación Antártica Peruana

Resumen

Durante enero de 2015, tasas de dosis gamma absorbidas debido a radionúclidos naturales por encima del suelo fueron calculadas a través de diferentes áreas de la Estación Antártica Peruana “Machu Picchu”. La tasa de dosis gamma media al aire libre en el aire fue 43 5 nGy/h. Utilizando los datos obtenidos en este estudio la dosis anual promedio se encontró que era aproximadamente de 376 44 Gy. Estos valores de dosis se encuentran muy por debajo de las dosis reportadas en el territorio peruano debido a la ubicación geográfica de la estación.

Palabras clave: Antártica; Radiactividad natural; Tasas de dosis


  1. Introduction

    Soils of Antarctica are widely regarded as poor regarding nutrients, places for plants and habitats for organisms. Some authors described them as young soils without horizons and raw in terms of their functions for soil processes [1]. King George Island has an ice-free area of about 8 %, weathered soils derived mainly from volcanic rock (andesite basalts and theirs pyroclastics), however, sedimentary rock may be also important in few sites. The periglacial condition with cryoturbation widely prevents active plant growth. Nevertheless, a great variety of soils has been described for Arctowski region, such as Haplorthels, Umbriturbels, Umbriorthels, Aquiturbels, Haploturbels, Sapristels, Mollorthels, and Psammorthels as determined according to Soil Survey Stuff 1998 [2]. Cryosols, Leptosols, Regosols and Fluvisols (WRB taxonomy) are described as main types for the Keller Peninsula region [3].

    Ongoing climate warming affects Antarctic environments like others in the world. Several indicators show these effects which can be seen in ecological studies. For example the spread of the endemic higher plants to new places, so far only covered by lichens or mosses, leading to new environments with higher trophic relationships, followed by significant changes in the soil environment. Natural radioactivity is wide spread in the earth’s environment; it exists in biotic and abiotic components. Environmental natural gamma radiation is formed from natural radionuclides include the primordial radioactive elements in the earth's crust, their radioactive decay products, and radionuclides produced by cosmic-radiation interactions. Low levels of uranium, thorium, and their decay products are found everywhere; however, locations with higher concentrations of these radionuclides in their soil have higher dose levels. Natural radionuclides in soil generate a significant component of the background radiation exposure of the population [4].

    Gamma radiation intensity in a region depends on soil and geographic structure. The natural radioactivity in soil comes mainly from the 238U, 232Th decay series and natural 40K, respectively [5].

    Perú has been a State Party to the Antarctic Treaty since 1981, and has been accepted as a Consultative Party in 1989. In order to develop scientific studies in situ Perú established a Scientific Station, named Machu Picchu (ECAMP), located at King George Island in Admiralty Bay, which is used as a summer station [6]. The main objective of this study was to evaluate the annual absorbed dose from outdoor terrestrial radiation. This study would be useful for establishing base line data on the gamma background radiation levels in different areas of the ECAMP for assessment of radiation exposures to the environment and possible variations due to climate change.

  2. Material and methods

    The Machu Picchu Scientific Station (62°5´ S, 58°28´W) is a Peruvian polar scientific research facility in Antarctica (Fig. 1), established to conduct Antarctic research on environmental chemistry, physics, climatology and biology. The surface area of study is about 0.2 km2. Influence area cover 0.38 km distance from the Station (Table 1, Fig. 2). During January 2015, gamma dose rates were measured on the surface using a portable digital personal radiation detector RadEye PRD Thermo Scientific.

  3. Results and discussion

    The contribution of natural radionuclides to the absorbed dose rate in air (ADRA) depends on the concentrations of the radionuclides in the soil. The greatest part of the gamma radiation comes from terrestrial radionuclides. There is a direct connection between terrestrial gamma radiation and radionuclide concentrations in soil.


    image

    Figure 1. Admiralty Bay, King George Island –Makellar Inlet. Peruvian Antarctic Station “Machu Picchu”.


    image

    Figure 2. Surface area of study and influence area of the Peruvian Antarctic Station.

    Outdoor gamma dose rates were determined in 140 sampling areas. Total outdoor gamma dose rates are presented in Table 1.

    The Kolmogorov–Smirnov statistic quantifies a distance between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution. The frequency Table and Kolmogorof-Smirnov Test show that the dose distribution is not homogeneous in the area (Fig. 3). Therefore the values of radioactivity in the area of estuary do not follow a normal distribution. The data has a value ranged between 31.5 and 71.1 nGy/h, it has a median value of 42.95 nGy/h and the median absolute deviation (MAD) for this data is 5.03 nGy/h with a variability of 14.58 %. Annual gamma dose was calculated as 376 44 Gy.

    Table 1. Absorbed dose rates above soil in the Peruvian Antarctic Station (2014).


    #

    Latitude

    Longitude

    nGy/h

    #

    Latitude

    Longitude

    nGy/h

    #

    Latitude

    Longitude

    nGy/h

    #

    Latitude

    Longitude

    nGy/h

    1

    -62.0915

    -58.4711

    46.0

    36

    -62.0914

    -58.4706

    39.9

    71

    -62.0919

    -58.4684

    39.3

    106

    -62.0917

    -58.4691

    40.6

    2

    -62.0911

    -58.4713

    48.6

    37

    -62.0912

    -58.4695

    43.3

    72

    -62.0917

    -58.4687

    37.2

    107

    -62.0911

    -58.4689

    42.9

    3

    -62.0908

    -58.4714

    44.3

    38

    -62.0914

    -58.4692

    48.3

    73

    -62.0996

    -58.4616

    33.9

    108

    -62.0915

    -58.4688

    41.6

    4

    -62.0908

    -58.4720

    44.3

    39

    -62.0914

    -58.4691

    46.0

    74

    -62.0992

    -58.4617

    38.2

    109

    -62.0919

    -58.4684

    41.9

    5

    -62.0910

    -58.4720

    43.6

    40

    -62.0916

    -58.4698

    42.6

    75

    -62.0992

    -58.4617

    38.2

    110

    -62.0923

    -58.4680

    41.9

    6

    -62.0912

    -58.4717

    40.9

    41

    -62.0917

    -58.4691

    42.3

    76

    -62.0988

    -58.4618

    35.2

    111

    -62.0928

    -58.4676

    40.3

    7

    -62.0911

    -58.4723

    50.3

    42

    -62.0919

    -58.4690

    42.9

    77

    -62.0983

    -58.4622

    36.6

    112

    -62.0932

    -58.4674

    47.0

    8

    -62.0910

    -58.4731

    48.0

    43

    -62.0921

    -58.4688

    45.3

    78

    -62.0979

    -58.4626

    37.9

    113

    -62.0917

    -58.4896

    47.6

    9

    -62.0913

    -58.4734

    44.6

    44

    -62.0924

    -58.4686

    47.0

    79

    -62.0975

    -58.4632

    34.2

    114

    -62.0914

    -58.4735

    49.3

    10

    -62.0912

    -58.4740

    35.9

    45

    -62.0926

    -58.4683

    44.3

    80

    -62.0971

    -58.4637

    35.2

    115

    -62.0918

    -58.4887

    47.0

    11

    -62.0911

    -58.4736

    37.9

    46

    -62.0928

    -58.4680

    42.9

    81

    -62.0967

    -58.4642

    38.2

    116

    -62.0920

    -58.4873

    44.0

    12

    -62.0913

    -58.4739

    47.0

    47

    -62.0932

    -58.4677

    43.3

    82

    -62.0967

    -58.4642

    38.2

    117

    -62.0920

    -58.4854

    44.6

    13

    -62.0914

    -58.4744

    44.6

    48

    -62.0930

    -58.4687

    47.0

    83

    -62.0964

    -58.4648

    33.9

    118

    -62.0920

    -58.4829

    46.3

    14

    -62.0914

    -58.4754

    37.9

    49

    -62.0934

    -58.4679

    51.0

    84

    -62.0959

    -58.4652

    36.6

    119

    -62.0918

    -58.4787

    49.3

    15

    -62.0915

    -58.4769

    35.9

    50

    -62.0936

    -58.4678

    49.3

    85

    -62.0955

    -58.4656

    44.0

    120

    -62.0915

    -58.4754

    42.3

    16

    -62.0916

    -58.4778

    40.3

    51

    -62.0936

    -58.4684

    56.0

    86

    -62.0943

    -58.4667

    48.0

    121

    -62.0924

    -58.4793

    47.3

    17

    -62.0917

    -58.4787

    34.9

    52

    -62.0932

    -58.4675

    42.9

    87

    -62.0933

    -58.4680

    48.6

    122

    -62.0926

    -58.4806

    39.3

    18

    -62.0918

    -58.4792

    36.9

    53

    -62.0942

    -58.4670

    47.3

    88

    -62.0934

    -58.4679

    53.3

    123

    -62.0922

    -58.4815

    39.3

    19

    -62.0918

    -58.4797

    37.6

    54

    -62.0942

    -58.4681

    45.0

    89

    -62.0934

    -58.4679

    50.3

    124

    -62.0922

    -58.4764

    47.0

    20

    -62.0919

    -58.4806

    35.9

    55

    -62.0951

    -58.4662

    52.3

    90

    -62.0936

    -58.4678

    50.3

    125

    -62.0917

    -58.4748

    44.6

    21

    -62.0918

    -58.4786

    36.6

    56

    -62.0955

    -58.4656

    37.6

    91

    -62.0936

    -58.4684

    47.3

    126

    -62.0928

    -58.4727

    44.0

    22

    -62.0920

    -58.4790

    37.9

    57

    -62.0959

    -58.4653

    36.9

    92

    -62.0951

    -58.4702

    41.9

    127

    -62.0922

    -58.4718

    49.3

    23

    -62.0921

    -58.4795

    33.9

    58

    -62.0963

    -58.4646

    37.2

    93

    -62.0954

    -58.4702

    42.9

    128

    -62.0930

    -58.4677

    53.3

    24

    -62.0922

    -58.4805

    31.5

    59

    -62.0970

    -58.4640

    34.9

    94

    -62.0936

    -58.4695

    55.0

    129

    -62.0927

    -58.4682

    48.3

    25

    -62.0922

    -58.4812

    35.2

    60

    -62.0975

    -58.4633

    32.2

    95

    -62.0936

    -58.4695

    55.0

    130

    -62.0925

    -58.4683

    56.7

    26

    -62.0921

    -58.4774

    40.9

    61

    -62.0978

    -58.4628

    37.9

    96

    -62.0938

    -58.4705

    42.3

    131

    -62.0920

    -58.4688

    55.0

    27

    -62.0922

    -58.4761

    45.6

    62

    -62.0982

    -58.4622

    38.2

    97

    -62.0938

    -58.4723

    50.0

    132

    -62.0917

    -58.4690

    42.3

    28

    -62.0923

    -58.4764

    41.3

    63

    -62.0986

    -58.4618

    34.6

    98

    -62.0950

    -58.4738

    49.3

    133

    -62.0919

    -58.4696

    48.0

    29

    -62.0920

    -58.4757

    48.6

    64

    -62.0990

    -58.4617

    37.2

    99

    -62.0944

    -58.4745

    47.6

    134

    -62.0919

    -58.4697

    71.1

    30

    -62.0917

    -58.4748

    40.6

    65

    -62.0996

    -58.4616

    38.6

    100

    -62.0940

    -58.4745

    36.2

    135

    -62.0924

    -58.4695

    49.7

    31

    -62.0920

    -58.4745

    37.6

    66

    -62.0995

    -58.4614

    33.9

    101

    -62.0939

    -58.4734

    49.7

    136

    -62.0914

    -58.4701

    51.0

    32

    -62.0921

    -58.4739

    35.9

    67

    -62.0989

    -58.4617

    35.6

    102

    -62.0931

    -58.4688

    51.7

    137

    -62.0912

    -58.4709

    49.3

    33

    -62.0927

    -58.4735

    35.6

    68

    -62.0986

    -58.4617

    38.9

    103

    -62.0929

    -58.4678

    45.6

    138

    -62.0914

    -58.4715

    52.0

    34

    -62.0915

    -58.4736

    38.6

    69

    -62.0925

    -58.4679

    37.2

    104

    -62.0925

    -58.4682

    49.0

    139

    -62.0912

    -58.4724

    48.6

    35

    -62.0916

    -58.4724

    39.9

    70

    -62.0922

    -58.4681

    38.6

    105

    -62.0921

    -58.4687

    46.0

    140

    -62.0925

    -58.4683

    45.6


    image

    Figure 3. Frequency table and Kolmogorof-Smirnov test.


    The contour map of the dose rate shows that the highest levels are found in the area of the scientific station site (Figure 4). The dose values are far below the doses reported in the Peruvian territory due to the geographical location of the statio, Benavente, Celedonio and Manosalva report on Peruvian territory, depending on the height above sea level, environmental effective dose values above 100 nSv/h [7, 8, 9, 10]. On the other hand, the average outdoor gamma dose rate in air of Turkey was 118 nGy/h [11].


    image

    Figure 4. Distribution of absorbed dose in the study area.


  4. Conclusions

    A total of 140 measurements were made covering the area of the Peruvian Antarctic Station “Machu Picchu”. From the measurements made here, the average outdoor gamma dose rate in air due to terrestrial and cosmic radiations was found to be about 43 nGy/h and the median annual dose was found to be about 376 Gy.

  5. References

[1] Tedrow JCF, Ugolini FC. Antarctic soils. In: Tedrow JCF, ed. Antarctic soils and soil forming processes. American Geophysical Union Antarctic Research Series 8:161–177; 1966.

[2] Blume HP, Beyer L, Kalke E, Kuhn D. Weathering and soil formation. In: Beyer L, BölterM, Eds. Geoecology of Antarctic Ice−free Coastal Landscapes. Ecological Studies 154. Berlin: Springer; 2002.

[3] Francelino MR, Schaefer C, Filho E, Simas F, Albuquerque M.R. Soils developed from volcanics in Keller Peninsula, King George Island, Antarctica: Formation and mapping. In: 18th World Congress of Soil Science. 2006 Jul 9–15; Philadelphia, USA; 2006. p. 175−4.

[4] Karahan G, Bayulken A. Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity. 2000; 47: 213-221.

[5] United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Biological Effects of Ionizing Radiation. UNSCEAR 2000 Report Vol. I Annex B. New York: United Nations; 2000.

[6] Oyarce-Yuzzelli A. 2008. Peru and the environmental protection of Antarctica. In: Tamburelli G, Ed. The Antarctics legal system: The protection of the environment of the polar regions.. Istituto di Studi Giuridici Internazionali. Rome: Giuffré Editore; 2008.

[7] Benavente T, Celedonio E. Medición de radiación ambiental en el Centro Nuclear “RACSO” usando dosimetría termolumi-niscente. Revista de Investigación de Física. 1998; 1(1): 60-62.

[8] Benavente T, Celedonio E. Medición de la radiación ambiental en el Centro Nuclear “RACSO” usando dosímetros termolumi-niscentes. Informe Científico Tecnológico; 2003. p. 148. [9] Manosalva J. Radiación ambiental en el eje vial Amazonas Centro (Lima-Tingo María). Revista del Instituto de Investigación FIGMMG. 2010; 13(25): 70-74.

[10] Manosalva J. Radiación ambiental en la ruta Cusco-Machu Picchu. Revista del Instituto de Investigaciones de la Facultad de Geología, Minas, Metalurgia y Ciencias Geogáficas. 2013; 15(30): 116-119.